top of page
Açımlayıcı Faktör Analizi İle Alt Boyut Sayısının ve Madde Dağılımının Tespiti
01:01
Birlikte Ölçek Geliştirelim
01:01
Hayes Process Modeli İle Düzenleyici Değişken Analizi
01:01
Sıfırdan SPSS Ders 35: Hayes PROCESS Modeli İle Düzenleyici (Moderatör) Değişken Analizi - TANITIM
07:15
Örneklem Büyüklüğü Belirleme Yolları
01:01
Bağımsız Gruplar T Testinde Anlamlılık Değeri
01:01
İki Aşamalı Kümeleme Analizi Nasıl Yapılır?
01:01
Sıfırdan SPSS Ders 34: Kümeleme Analizi - 3 (İki Aşamalı Kümeleme) - TANITIM
02:34
Sıfırdan SPSS Ders 33: Kümeleme Analizi - 2 (K-Means Kümeleme) - TANITIM
02:19
Hiyerarşik Kümeleme Analizi
01:01
Sıfırdan SPSS Ders 32: Kümeleme Analizi - 1 (Hiyerarşik Kümeleme) - TANITIM
05:24
Learn SPSS from Scratch – Lesson 7: Creating Variables Using Formulas
08:46
Learn SPSS from Scratch – Lesson 6: Creating a Categorical Variable from a Continuous Variable
10:40
Learn SPSS from Scratch – Lesson 5: Rearranging the Groups of a Categorical Variable
10:47
Learn SPSS from Scratch – Lesson 4: Calculating Scale Scores
12:00
Learn SPSS from Scratch – Lesson 3: Reverse Coding
12:20
Learn SPSS from Scratch – Lesson 2: Data Entry and Preliminary Editing
22:00
Learn SPSS from Scratch – Lesson 1: Getting Started
14:46

YOUTUBE KANALIMIZA GÖZ ATTINIZ MI? ARADIĞINIZ BİLGİ KANALIMIZDA OLABİLİR. TIKLAYINIZ.

Simple Linear Regression Analysis with SPSS | Comprehensive Coverage from Assumptions

  • 17 Eyl 2023
  • 2 dakikada okunur

What is Simple Linear Regression Analysis?

How Can I Easily Perform this Analysis with SPSS?


If you're looking for answers to these questions, you're in the right place. Let's try to provide the answers without delving into overly complex explanations. Statistics plays a crucial role in science and the business world. Statistical analyses help us understand data, make predictions about the future, and support our decision-making. Simple linear regression analysis is a fundamental component of statistical analyses, and its purpose is to understand the relationship between two variables and make predictions.


What is Simple Linear Regression?

Simple linear regression analysis is a method of attempting to express the relationship between two variables using a mathematical model. There are two main variables:

  • Dependent variable (y)

  • Independent variable (x)

This analysis measures the impact of the independent variable (x) on the dependent variable (y).

The fundamental equation that represents the relationship is as follows: y = β₀ + β₁x + ε.


In this equation, β₀ and β₁ coefficients determine the nature of the relationship, and ε represents the error term. In fact, we can also write this formula as y = a + bx + ε, where a = the intercept, b = the regression coefficient, and ε = the error value. We recommend listening to a very simple explanatory video that you can access by clicking here.


Then, how can we perform Simple Linear Regression with SPSS?

There are some prerequisites you should consider first:

  • Measurement Levels: X and Y variables should have at least an equally interval measurement level.

  • Linearity: The relationship should be linear, meaning the relationship between x and y can be expressed with a straight line.

  • Normal Distribution: Both variables should follow a normal distribution.

  • Normal Distribution of Errors: The error term ε should follow a normal distribution, which enhances the reliability of predictions.

  • Independence of Errors: Errors should be independent of each other.

  • Outliers: There should not be values considered as outliers among the measurements.

  • Homoscedasticity: When there is no homoscedasticity, heteroscedasticity occurs, which means that the variance of the error term varies. This can weaken the reliability of the model.

In conclusion, simple linear regression analysis is a powerful tool for examining the relationship between two variables and making predictions.

"However, like any analysis, proper data collection, evaluating the model's fit, and interpreting the results are crucial. We prefer to explain the next steps through a video rather than in writing.


In the video below, we provide a comprehensive guide on how to perform simple linear regression analysis using SPSS, covering all the details from meeting the assumptions to interpreting the findings.


We kindly request you to like the video if you find it helpful:"

Here's what you can expect in the video:

00:00 Introduction

00:30 Establishing the Model and Hypothesis

01:38 Testing Assumptions

02:55 Checking for Linearity

04:44 Starting the Analysis

08:04 Checking for Outliers

08:47 Verifying Normal Distribution of Errors

09:28 Assessing Homoscedasticity

09:51 Ensuring Independence of Errors

11:00 Interpreting Regression Findings

17:18 Regression Result and Hypothesis Acceptance/Rejection


Feel free to ask any questions or share your feedback in the comments section. We would greatly appreciate your feedback. Additionally, if you'd like to follow our free content, we'd be delighted if you subscribe to our channel at https://www.youtube.com/tezyardimplatformu."

 
 
bottom of page