top of page
Learn SPSS from Scratch – Lesson 7: Creating Variables Using Formulas
08:46
Learn SPSS from Scratch – Lesson 6: Creating a Categorical Variable from a Continuous Variable
10:40
Learn SPSS from Scratch – Lesson 5: Rearranging the Groups of a Categorical Variable
10:47
Learn SPSS from Scratch – Lesson 4: Calculating Scale Scores
12:00
Learn SPSS from Scratch – Lesson 3: Reverse Coding
12:20
Learn SPSS from Scratch – Lesson 2: Data Entry and Preliminary Editing
22:00
Learn SPSS from Scratch – Lesson 1: Getting Started
14:46
Kaç yıldır varız? Neden bazı videolar ücretli? Ücret pahalı mı? Nasıl üye olunur?
01:01
İki yönlü ANOVA ne işe yarar? Nasıl yapılır?
01:01
İki durumlu lojistik regresyon analizi nasıl yapılır?
01:01
Kanalımız ve Üyelik Sistemi Hakkında
04:14
Hiyerarşik regresyon nasıl yapılır?
01:01
SPSS'te çoklu doğrusal regresyon analizi nasıl yapılır?
01:01
SPSS'te basit doğrusal regresyon analizi nasıl yapılır?
01:01
Çoklu ve kısmi korelasyon analizleri nasıl yapılır?
01:01
SPSS'te korelasyon analizi en pratik yoldan nasıl yapılır?
01:01
Sıfırdan SPSS Ders 31: İki Yönlü (Faktörlü) ANOVA (Tanıtım Videosu)
02:34
Normal dağılmayan ikiden fazla tekrarlı ölçüm ortalaması nasıl karşılaştırılır?
01:01

YOUTUBE KANALIMIZA GÖZ ATTINIZ MI? ARADIĞINIZ BİLGİ KANALIMIZDA OLABİLİR. TIKLAYINIZ.

Type 1 Error, Type 2 Error, and Test Power: What Are They?

  • 12 Eyl 2023
  • 1 dakikada okunur

The concepts of Type 1 error, Type 2 error, and test power are of great importance in the research we conduct, but unfortunately, they can be a bit challenging to understand.

Type 1 error expresses the probability of claiming that there is an effect/relationship when there isn't one in reality and is referred to as the test's error rate. It's also called the significance level and is generally accepted as no more than 0.05 or 5%. When determining the sample size, as n increases beyond what is necessary, the probability of making a Type 1 error increases.

Type 2 error, on the other hand, is the probability of failing to detect an effect/relationship that actually exists. It is generally accepted as no more than 0.20 or 20%. When determining the sample size, if n is insufficient, the probability of making a Type 2 error increases.

Finally, test power indicates the probability of finding a significant result in the test. It is determined by the formula "1 - Type 2 error." Therefore, since Type 2 error is accepted as no more than 0.20, the test power should be at least 0.80 (80%).

You can watch the details of the topic in our video:

Your feedback and questions are always welcome, and we would especially appreciate them in the video's comment section. We would like to emphasize that we would be particularly delighted to receive your feedback.




 
 
bottom of page